Disparity in elevational shifts of European trees in response to recent climate warming.
نویسندگان
چکیده
Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography.
منابع مشابه
Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre
Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species' response to clima...
متن کاملEvidence of Tree Species’ Range Shifts in a Complex Landscape
Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large, environmentally diverse regio...
متن کاملClimate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America
Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although th...
متن کاملElevational Shifts of Freshwater Communities Cannot Catch up Climate Warming in the Himalaya
Climate warming threatens biodiversity at global, regional and local levels by causing irreversible changes to species populations and biological communities. The Himalayan region is highly vulnerable to climate warming. This calls for efficient environmental management strategies because biodiversity monitoring is costly, particularly for the developing countries of the Himalaya. Species distr...
متن کاملExtinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar
One of the predicted biological responses to climate warming is the upslope displacement of species distributions. In the tropics, because montane assemblages frequently include local endemics that are distributed close to summits, these species may be especially vulnerable to experiencing complete habitat loss from warming. However, there is currently a dearth of information available for trop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Global change biology
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2013